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Abstract
We derive the wavefunction and energy level formula for two charged particles
with magnetic interaction, i.e., the Hamiltonian includes both two-body
Coulomb interaction and a kinetic coupling. It is by virtue of the EPR entangled
state representation we can conveniently derive the exact result.

PACS numbers: 03.65.Ud, 03.67.−a

1. Introduction

Solving Schrödinger equations for given Hamiltonians is always a challenge to theoretical
physicists, since only very limited dynamic models can be solved analytically. Choosing a
suitable quantum-mechanical representation may bring much convenience for working out
exact solutions of Schrödinger equations [1]. In this work we begin by considering an
electron located above an infinite dielectric medium plane at distance x, the dielectric constant
is ε. According to the electric-mirror imaging method in electrodynamics the static electric
potential is

V (x) =
{

−g/x g = e2

4πε0

1
4

ε−1
ε+1 > 0 x > 0

∞ x < 0
(1)

where ε0 is the dielectric constant for the vacuum. Now we extend (1) to the following bipartite
case,

H = P 2
1

2m1
+

P 2
2

2m2
+

g

X1 − X2
+ kP1P2 (2)
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where the terms g

X1−X2
and kP1P2 denote a Coulomb potential and a kinetic coupling,

respectively. (The Hamiltonian (2) and later (3) apply to a system composed of two separate
charged particles moving in free space including the effects of their interaction via the vector
potential �j · �A (the current of one particle times the vector potential of the other particle)
where �j is the current and �A is the electromagnetic potential). In the nonrelativistic case,
the complication arising from the Lienard–Wiechert potential can be neglected. Aside from
the dependence on their separation, such a term is proportional to the dot product of the two
momenta (magnetic interaction). So if the distance between the two particles is much larger
than the amount that they move over the time of interest, then the distance can be approximated
by a constant and all of the dynamics depends only on the dot product of the momenta. So
far as we know, the wavefunction and energy eigenvalues for (2) have not been reported in the
literature before, not to mention the generalization of (2) to the three-dimensional case with
the Hamiltonian being

H =
�P 2

1

2m1
+

�P 2
2

2m2
+ k �P 1 · �P 2 +

g

| �R1 − �R2|
=

3∑
i=1

(
P 2

1i

2m1
+

P 2
2i

2m2
+ kP1iP2i

)
+

g

| �R1 − �R2|
where �R1 = (X1, Y1, Z1) �R2 = (X2, Y2, Z2). (3)

The purpose of this work is to find the solutions for (2) and (3). We would expect that
the energy spectrum of H can be divided into two parts: a continuous part corresponding to
the motion of the centre of the mass, and a discrete one responsible for the relative motion of
two particles. We shall employ the entangled state representation of continuum variables to
explicitly derive the energy formulae. The concept of quantum entanglement regarding two
particles’ relative coordinate Xr = X1 − X2 and total momentum P = P1 + P2 was initiated
by Einstein Podolsky and Rosen (EPR) in [2], to criticize the incompleteness of quantum
mechanics. Based on the commutator [Xr, P ] = 0, we can establish the common eigenvector
|η〉 of Xr and P, which is qualified to be a quantum-mechanical representation. Since the
term g

X1−X2
in (2) is diagonalized in the 〈η| representation, we are naturally led to working

out the solution of (2) in the entangled state representation. At this point, we mention that
there is no direct relevance of the original EPR argument of quantum entanglement for solving
the eigenvalue problems. This is because EPR’s original idea of entanglement is involved
in certain two-particle states with the property that a measurement of one chosen variable of
particle 1 completely determines the outcome of a measurement of the corresponding variable
of particle 2. At the time of measurement, the two particles may be so far apart that no
influence resulting from one measurement can possibly propagate to the other particle in the
available time. In contrast, the two particles described by the Hamiltonian (2) contain mutual
interaction, so the EPR argument cannot be applied to this system. In this sense, the usefulness
of EPR pairs we shall present in the following sections is merely accidental, despite some
superficial formal analogies.

2. Brief review of the EPR entangled states

Since

[Xr, P ] = 0 (4)

they can possess the common eigenvector |η〉 [3],

|η〉 = exp

[
−|η|2

2
+ ηa

†
1 − η∗a†

2 + a
†
1a

†
2

]
|00〉 η = η1 + iη2 (5)
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where the Bose creation operator a
†
i and the annihilation operator ai are related to Xi and Pi

by

Xi = ai + a
†
i√

2
Pi = ai − a

†
i√

2i
(h̄ = 1) (6)

and
[
ai, a

†
j

] = δij . It has been proved in [3] that(
a1 − a

†
2

)|η〉 = η|η〉 (
a2 − a

†
1

)|η〉 = −η∗|η〉
(7)

Xr |η〉 =
√

2η1|η〉 P |η〉 =
√

2η2|η〉.
Moreover, the |η〉 states span an orthonormal and complete set, i.e.,

〈η|η′〉 = πδ(η − η′)δ(η∗ − η′∗) (8)

and ∫
d2η

π
|η〉〈η| = 1. (9)

Hence |η〉 is qualified to be a quantum-mechanical representation for bipartite systems. In [4],
we have used |η〉 to further discuss the correlative amplitude–operational phase entanglement.
According to [5] we can derive the Schmidt decomposition of |η〉 [6],

|η〉 = e−iη1η2

∫ ∞

−∞
dp|p +

√
2η2〉1 ⊗ |−p〉2 e−i

√
2η1p (10)

where |p〉i is the momentum eigenstate. We shall deal with Hamiltonian (2) in the |η〉
representation.

3. The energy eigenvalues and wavefunctions for Hamiltonian (2)

In equation (2) when k = 0, one can easily separate the motion of the centre-of-mass from the
relative motion of the two particles. By introducing

µ1 = m1

M
µ2 = m2

M
M = m1 + m2 µ = m2m1

M
Pr = µ2P1 − µ1P2

(11)

the Hamiltonian (2) is split into

H = H1 + H2 H1 = P 2

2M
H2 = P 2

r

2µ
+

g

Xr

. (12)

However, when k 	= 0, the Hamiltonian becomes

H =
(

1

2M
+ kµ1µ2

)
P 2 +

(
1

2µ
− k

)
P 2

r + k(µ2 − µ1)PPr +
g

Xr

(13)

the existence of k(µ2 − µ1)PPr prevents one from separating out the centre-of-mass motion.
Then a question naturally arises: how to solve the eigenstate problem H |En〉 = En|En〉?

An effective way of converting the eigenstate problem into a c-number differential
equation is by virtue of the entangled state representation |η〉, we project H |En〉 = En|En〉
onto the 〈η| state,

〈η|H |En〉 = En〈η|En〉. (14)
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From (10) we have

Pr |η〉 = e−iη1η2

∫ ∞

−∞
dp(µ2p +

√
2η2 + µ1p)|p +

√
2η2〉1 ⊗ |−p〉2 e−i

√
2η1p

=
√

1

2

[
i

∂

∂η1
− (µ1 − µ2)η2

]
|η〉. (15)

Substituting (13), (15) and (7) into (14), we obtain{(
1

M
+ 2kµ1µ2

)
η2

2 +
1

2

(
k − 1

2µ

) [
∂

∂η1
− i(µ1 − µ2)η2

]2

− iη2k(µ2 − µ1)

[
∂

∂η1
− i(µ1 − µ2)η2

]
+

g√
2η1

}
ψn(η) = Enψn(η) (16)

where ψn(η) = 〈η|En〉 is the wavefunction of the eigenstate in the |η〉 representation.
In order to solve equation (16), we first simplify it to the standard form by eliminating

the term of the first order of differentiation. This can be done by introducing ϕn =
exp[−i(µ1 − µ2)η1η2]ψn(η) and substituting ϕn into (16) yields{

1

2

(
k − 1

2µ

)
∂2

∂η2
1

− iη2k(µ2 − µ1)
∂

∂η1

+

[(
1

M
+ 2kµ1µ2

)
η2

2 +
g√
2η1

− En

]}
ϕn(η) = 0. (17)

We further introduce

ϕ′
n(η1, η2) = e−iη1ρϕn ρ ≡ 2η2kµ(µ1 − µ2)/(1 − 2kµ) (18)

into (17), this gives rise to{
1

2

(
k − 1

2µ

)
∂2

∂η2
1

+
g√
2η1

− En +
1 − k2µM

M(1 − 2µk)
η2

2

}
ϕ′

n(η) = 0. (19)

Then we perform a Fourier transform on ϕ′
n(η1, η2) with respect to the variable η1 only,

ϕ′
n(η1, η2) ←→ φ′

n(ξ1, η2) =
∫ ∞

−∞
eiξ1η1ϕ′

n(η1, η2) dη1. (20)

It then follows d
dη1

ϕ′
n(η1, η2) ←→ −iξ1φ

′
n(ξ1, η2) and

1

η1
ϕ′

n(η1, η2) ←→ i
∫ ξ1

−∞
φ′

n(ξ
′
1, η2) dξ ′

1, (21)

which is analogous to the Fourier transform between coordinate representation 〈x1| and the
momentum representation 〈p1| that while 〈x1| 1

X1
= 1

x1
〈x1|, 〈x1|P1 = −i d

dx1
〈x1|, the inverse

of coordinate operator X1 in 〈p1| representation is expressed as 〈p1| 1
X1

= −i
∫ p1

−∞ dp′
1〈p′

1|,
since 〈p1|X1 = i d

dp1
〈p1|. Now the differential equation (19) becomes

ig√
2

∫ ξ1

−∞
φ′

n(ξ
′
1, η2) dξ ′

1 +

[
1

2

(
1

2µ
− k

)
ξ 2

1 +
1 − k2µM

M(1 − 2µk)
η2

2 − En

]
φ′

n(ξ1, η2) = 0. (22)

This integral-differential equation is only issued on ξ1, while η2 appears only as a parameter,
so in the following we do not write it explicitly. Equation (22) can be rewritten as

φ′
n(ξ1)∫ ξ1

−∞ φ′
n(ξ

′
1) dξ ′

1

= −
√

2ig(
1

2µ
− k

) 1

ξ 2
1 + f 2

(23)
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where

f 2 = 4µ

1 − 2µk

(
1 − k2µM

M(1 − 2µk)
η2

2 − En

)
since En < 0 f 2 > 0. (24)

Solving equation (23) we obtain∫ ξ1

−∞
φ′

n(ξ
′
1) dξ ′

1 = exp

[
−i

√
2g(

1
2µ

− k
)
f

arctan
ξ1

f

]
+ C. (25)

At this point we note that arctan ξ1

f
is a multi-valued function. In order that the wavefunction

is unique, we should require
√

2g(
1

2µ
−k

)
f

= 2n, n is an integer. Then

f = g√
2n

(
1

2µ
− k

) . (26)

This leads to the energy eigenvalues,

En = 1 − k2µM

M(1 − 2µk)
η2

2 − 1

2

(
1

2µ
− k

)
f 2 = 1 − k2µM

M(1 − 2µk)
η2

2 − g2µ

2n2h̄2(1 − 2kµ)
(27)

where we have recovered h̄, the energy in the first term is continuous and related to the centre-
of-mass motion, while the second term is quantized, in agreement with our early expectation.

Or we can rewrite (27) as

En = 1 − k2m1m2

(1 − 2µk)

P 2

2M
− g2µ

2n2h̄2(1 − 2kµ)

since the total momentum P = P1 + P2 commutes with the Hamiltonian. We can see that
when k = 0, the energy levels return to the familiar case En = P 2

2M
− g2µ

2n2h̄2 . From equation (27)
we also note that the presence of kinematic coupling increases the separation of two adjacent
energy levels for k > 0.

Differentiating the two sides of (25) with respect to ξ1, we obtain the wavefunction

φ′
n(ξ1) = −2

√
2µgi

(1 − 2µk)

1( √
2µg

n(1−2µk)

)2
+ ξ 2

1

exp

[
−2ni arctan

n(1 − 2µk)ξ1√
2µg

]
. (28)

4. The energy eigenvalues and wavefunctions for Hamiltonian (3)

We now consider the Hamiltonian (3) which is a three-dimensional generalization of (2).
Following the same procedures as from (14) to (19) we have{

1

2

(
k − 1

2µ

)
∇2

�η1
+

g√
2|�η1|

− En +
1 − k2µM

M(1 − 2µk)
�η2

2

}
ϕ′

n(�η) = 0 (29)

where

�η = (α, β, γ ) �η1 = (α1, β1, γ1) �η2 = (α2, β2, γ2)

∇2
�η1

= ∂2

∂α2
1

+
∂2

∂β2
1

+
∂2

∂γ 2
1

�η2
2 = α2

2 + β2
2 + γ 2

2 |�η1| =
√

α2
1 + β2

1 + γ 2
1 .

Changing �η1 = (α1, β1, γ1) to the spherical polar coordinates (r, θ, φ),

α1 = r sin θ sin φ β1 = r sin θ cos φ γ1 = r cos θ
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(29) becomes

1

2

(
k − 1

2µ

) [
1

r2

∂

∂r

(
r2 ∂ϕ′

n

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ′
n

∂θ

)
+

1

r2 sin θ

∂2ϕ′
n

∂φ2

]
ϕ′

n

+

(
g√
2r

− En +
1 − k2µM

M(1 − 2µk)
�η2

2

)
ϕ′

n = 0. (30)

Comparing (30) with the well-known differential equation for the radial Coulomb potential
− e2

r
,

− 1

2m

[
1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin θ

∂2ψ

∂φ2

]
− e2

r
ψ = Eψ (31)

we see the correspondence

1

m
←→ 1

2µ
− k −e2 ←→ g√

2
E ←→ En − 1 − k2µM

M(1 − 2µk)
�η2

2. (32)

Therefore the energy level formula in the three-dimensional case is

En = 1 − k2µM

M(1 − 2µk)
�η2

2 − g2µ

2n2h̄2(1 − 2kµ)
. (33)

In summary, by virtue of the EPR entangled state representation we have derived the
wavefunction and energy level formula for two particles which possesses both two-body
Coulomb interaction and a kinetic coupling. We emphasize that there is no direct relevance
of the original EPR argument of quantum entanglement for solving the eigenvalue problems,
i.e., the usefulness of EPR entangled state |η〉 is merely for the convenience of solving the
Hamiltonian. This work shows that entangled state representations may simplify calculations
for some dynamic problems. Thus finding more multi-partite entangled state representations
in quantum mechanics represents a challenge to future investigations solving more general
Hamiltonians.
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